The generator matrix 1 0 1 1 X^2 1 1 1 X^2+X 1 1 X 1 1 0 1 1 X 1 1 1 X^2+X+2 X^2+X+2 1 1 1 X^2+2 1 1 1 1 1 X^2+2 X^2+X X^2+2 1 1 1 1 X^2+2 X+2 X+2 1 X^2 1 1 X^2+2 1 1 0 1 1 X^2+X 1 X^2+X+1 X^2 3 1 X+2 X+1 1 X^2 X+1 1 X^2+X+3 2 1 0 X^2+1 2 1 1 2 2 X^2+3 1 X+2 X+2 X^2+X X X^2+X+3 1 1 1 X+1 3 X^2+3 3 1 1 1 X^2+X+3 X^2 X+3 X^2+3 1 X+1 X+2 0 0 X 0 X+2 X X+2 2 0 X^2+X+2 2 X+2 X^2+X+2 X^2+X X^2+2 X^2+2 X^2 X^2+X+2 X^2+X X^2+X+2 X^2+2 X X^2+2 X+2 0 X^2 X^2+X+2 2 X^2+X+2 X^2 X^2 X^2+X 2 0 X+2 X^2 0 X^2+X X X^2 X^2+2 X^2+X 2 X^2 X+2 X^2 X^2+X+2 2 X^2+X 0 0 0 2 0 2 2 2 2 0 0 2 2 2 0 0 0 2 0 0 2 0 2 0 2 2 0 0 2 2 0 0 2 0 2 2 0 2 2 2 0 0 2 0 0 0 2 2 0 generates a code of length 49 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 45. Homogenous weight enumerator: w(x)=1x^0+136x^45+401x^46+968x^47+426x^48+508x^49+355x^50+732x^51+256x^52+148x^53+74x^54+60x^55+20x^56+8x^57+1x^62+1x^64+1x^66 The gray image is a code over GF(2) with n=392, k=12 and d=180. This code was found by Heurico 1.16 in 0.219 seconds.